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Abstract The performance of three different functions

(penalty, Lagrange–Newton, and projection) used in com-

bination with three different Newton-based optimization

algorithms for solving large-scale constrained optimiza-

tions is investigated. The test cases correspond to locating

minima on seams between two force field energy functions,

which can be used to model transitions structures in

chemical reactions. The Lagrange–Newton function used

in combination with a standard Newton–Raphson optimi-

zation is found to be the most efficient for systems up to

*500 atoms, while an iterative algorithm becomes pre-

ferable for larger systems.

Keywords Force field � Constrained optimization �
Macromolecules � Seam minimum

1 Introduction

The exploration of potential energy surfaces for describing

chemical systems is well-established, and a variety of

methods exist for locating minima and saddle points on

such surfaces [1]. A description of photochemical reactions

requires at least two energy surfaces, and the intersection

of these surfaces plays an important role in describing the

dynamics of the photo-chemical or photo-physical beha-

vior [2–5]. For two surfaces with different symmetry

(space or spin) the relevant point is a minimum on the seam

of the two surfaces [7–9]. This corresponds to a minimum

in the N - 1 dimensional space, where the constraint is

that the energies of the two surfaces should be equal. For

two surfaces with the same symmetry, the relevant point is

a conical intersection, which corresponds to a minimum in

the N - 2 dimensional space, where the additional con-

straint is related to the adiabatic coupling element between

the two surfaces [2–5].

The mathematical problem of locating minima on seams

or conical intersections is a constrained optimization, and

several methods have been proposed for solving this

problem [10–24]. The application of these methods has

primarily been for modest sized systems with less than 100

variables, where the surfaces have been calculated using

electronic structure methods. In a different context, we

have proposed to use minima on seams to model chemical

reactions using computational inexpensive force field

methods [19, 25, 26], and the target systems here may

contain several thousand atoms. In order to use this method

as a general tool for modeling reactivity, we require a

computational inexpensive method for locating minima on

seams for systems with a large number of variables, and in

the present paper we investigate the optimum strategy for

solving such optimization problems. Although only the

problem of a single constraint (energy equality) is con-

sidered at present, it is expected that the findings will also

apply for solving problems with more constraints, such as

locating conical intersections [4–6, 10, 11]. It is also pos-

sible that our finding will be useful for solving other types

of large-scale constrained optimizations.

2 Theory

We consider the problem of locating a minimum on a seam

for two different functions E1 and E2, which are taken as

force field energy functions in the present case. The
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mathematical problem can be formulated as minimizing the

sum of the two energies, subject to the constraint that the

two energies are equal, see Eq. 1.

Minimize E1ðxÞ þ E2ðxÞ subject to E1ðxÞ ¼ E2ðxÞ: ð1Þ

Three different approaches have been proposed for solving

this [10–24] and related [27–29] constrained optimization

problems:

1. A penalty function [2].

2. A Lagrange–Newton function [10, 11, 13–19].

3. A projection function [20–24].

The penalty approach defines a target function where the

constraint condition is added with a suitable weighting

factor. We have chosen the simple harmonic form shown in

Eq. 2, but other choices are also possible [2].

PenðxÞ ¼ E1ðxÞ þ E2ðxÞ þ wðE1ðxÞ � E2ðxÞÞ2: ð2Þ

Minimization of the penalty function will locate a point

where the constraint condition is fulfilled with an accuracy

related to the magnitude of the weight factor w. The

advantage of the penalty approach is that the minimization

of the target function can be done using standard

techniques for function minimization, including methods

which can be used to force the convergence and methods

where analytical gradients are not available. The

disadvantage is that the constraint condition is only

satisfied approximately, and a large value of w may be

required for meeting the constraint condition with an

acceptable accuracy, and this can cause numerical

problems. The numerical aspect may be to some extend

circumvented by increasing the value of w as the

optimization converges, but it may be difficult to

establish stable criteria for adjusting the magnitude of w

during the optimization, especially as it is likely that the

optimum strategy will depend on the number of variables.

The Lagrange–Newton (LN) approach defines a target

function as shown in Eq. 3.

LNðx; rÞ ¼ E1ðxÞ þ E2ðxÞ þ rðE1ðxÞ � E2ðxÞÞ: ð3Þ

In Eq. 3 the constraint is enforced by means of a Lagrange

multiplier r. In contrast to the penalty method, the opti-

mization of the LN function is to a first-order saddle point

in the full parameter space ðx; rÞ: As is well-known, it is

more difficult to locate saddle points than minima, but the

special structure of the function in Eq. 3 means that the

eigenvector which should have a negative eigenvalue is

dominated by r, and this allows formulation of an opti-

mization which in practice is as stable as a regular mini-

mization [19]. A disadvantage is that knowledge of the

Hessian eigenvector space is required.

The projection method builds on the condition that the

direction perpendicular to the seam at a given point is

determined by the (normalized) gradient difference vector,

t [18]. An operator, P, for projecting onto the seam sub-

space and a complementary operator, Q, is defined in Eq. 4

and t is given by Eq. 5.

P ¼ 1� ttt and Q ¼ ttt: ð4Þ

tðxÞ ¼ g1ðxÞ � g2ðxÞ
jg1ðxÞ � g2ðxÞj

: ð5Þ

Within the seam subspace, the target function should be

minimized, allowing the problem to be formulated as

locating a zero point for the gradient function shown in

Eq. 6, where we have introduced a factor of 2 in the last

term to keep the expression similar to the gradient of the

penalty function, Eq. 7.

rProðxÞ ¼ Pðg1ðxÞ þ g2ðxÞÞ
þ 2wQðE1ðxÞ � E2ðxÞÞðg1ðxÞ � g2ðxÞÞ: ð6Þ

The projection method may be considered as a variation

of either the penalty or LN approach, where the energy

minimization is carried out only in the seam subspace

while the constraint condition is only considered in the

complimentary space. The relative importance of the two

terms may be adjusted by a weight factor w [30]. In the

present work we have chosen a value of 1 for w. It should

be recognized that there is no obvious function associated

with the gradient in Eq. 6 and a rigorous forcing of the

convergence by monitoring changes in function values is

therefore not possible. Furthermore, the second derivative

of the (unknown) projection function, which corresponds to

the Jacobian of the gradient function in Eq. 6, is non-

symmetric, which leads to complications when using

second-order optimization methods.

The projection and LN methods are the most popular

methods for locating seam minima and conical intersec-

tions, where the optimization typically has been done by a

quasi Newton–Raphson (NR) method using analytical

gradients and an updated Hessian. Although the use of

analytical Hessians is possible with the LN approach, the

computational cost for generating this information with

electronic structure methods is normally not cost-efficient.

During the course of the present work, Keal et al. [30]

published a study where they investigated the performance

of using either of the above three methods for locating

conical intersections for systems with up to 69 degrees of

freedom, and found that the LN was the most efficient

followed by the projection method.

For either of the above three functions one may employ

different optimization strategies, and we will here consider

the limited memory BFGS [31–35] and NR methods,

where the latter can be used either with an exact or an

updated Hessian. The penalty function can be optimized

using either of these methods, while the saddle point
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optimization of the LN function prevents a straightforward

use of the BFGS algorithm. The non-symmetric Jacobian

of the projection function, on the other hand, suggests that

this function is best optimized using a BFGS approach.

While the problem of constrained optimization is quite

general, the applications in computational chemistry have

typically been for cases where the two functions are

energies depending on a set of atomic coordinates. For such

systems there are only 3N - 6 independent variables, as

the three translational and three rotational degrees of

freedom do not lead to changes in the energy. In practise,

however, the energies are calculated from the full 3N set of

coordinates, and numerical issues mean that the transla-

tional and rotational (TR) invariance is not automatically

fulfilled. In an optimization these 6 degrees of freedom

often require special attention in order to render the algo-

rithm numerical stable.

We are in the present case interested in locating seam

minima for functions with thousands of variables corre-

sponding to atomic coordinates, and the handling of the

Hessian matrix in NR-based methods here requires special

attention. Our applications employ computationally inex-

pensive energy functions of the force field type, and cal-

culation of first and second analytical derivatives is

therefore relatively undemanding. The use of a regular NR

optimization implies storage and diagonalization of the

Hessian, which leads to memory demands of order N2 and

computational time of order N3. Especially the latter rap-

idly becomes the computational bottleneck for optimiza-

tions using force field energy functions. One may instead

employ a gradient-only optimization routine, such as the

BFGS method, or an iterative NR method.

The NR method can be used with an updating of either

the Hessian or its inverse. Not surprisingly we find that the

use of an updated Hessian significantly degrades the per-

formance compared to using an analytical Hessian. Since

the latter is computationally inexpensive in the present

case, we have not pursued the use of an updated Hessian

further. The BFGS method corresponds to updating an

inverse Hessian using gradient vectors, and the cost per

iteration is correspondingly much lower than using an

analytical Hessian, which offsets the lower quality of the

updated Hessian.

Conjugate gradient methods are very popular for large-

scale optimization. We have also tried conjugate gradient

methods and found that it is essential to have a good pre-

conditioner to obtain useful convergence. The limited

memory BFGS method, however, in all cases performed

better than conjugate gradient methods for the problems

considered in this paper.

In the present paper we examine the problem of

choosing the best combination of target function and

optimization algorithms for locating minima on seams of

two force field energy functions depending on up to a few

thousands of variables. Although this is a rather specialized

application, it is likely that our findings carry over to the

general problem of performing large-scale constrained

optimization in a set of (partly) redundant variables.

3 Optimization methods

In order to establish the notation, we briefly review the

employed optimization schemes, more details can be found

in the references [10–24, 36]. The two energy functions,

depending on a common set of atomic coordinates, x, will

be denoted E1 and E2 with corresponding gradients g1 and

g2 and Hessian matrices H1 and H2. The gradients and

Hessians of the penalty and LN functions are given in Eqs.

7 and 8. The gradient of the projection function is given in

Eq. 6.

rPen ¼ g1 þ g2 þ 2wðE1 � E2Þðg1 � g2Þ:
rrtPen ¼ H1 þH2 þ 2wðg1 � g2Þðg1 � g2Þt

þ 2wðE1 � E2ÞðH1 �H2Þ:
ð7Þ

rLN ¼ g1 þ g2 þ rðg1 � g2Þ:
orLN ¼ E1 � E2:

rrtLN ¼ H1 þH2 þ rðH1 �H2Þ:
orrLN ¼ g1 � g2:

o2
rLN ¼ 0:

ð8Þ

A standard NR optimization of a target function leads to a

predicted step given by

Dx ¼ �ðH� kIÞ�1g and jDxj2 ¼ R2; ð9Þ

where the level shift parameter k is used to control both the

step-direction and -size. A popular strategy for choosing k
is by requiring that the steplength must be smaller than or

equal to the current trust radius R [37]. The trust radius is

continuously updated based on the ratio between the pre-

dicted and actual function change. Solution of Eq. 9

involves diagonalization of the Hessian which rapidly

becomes impractical as the number of variables increases.

The BFGS method [31–35] is a quasi-Newton method

which uses gradient information to construct approxima-

tions to the inverse Hessian in iteration j ? 1 using Eq. 10.

H�1
jþ1 � H�1

j þ
st

jyj þ yt
jH
�1
j yj

st
jyj

sjs
t
j

�
H�1

j yjs
t
j þ sjy

t
jH
�1
j

st
jyj

: ð10Þ

The initial approximation to H-1 is usually a (scaled)

identity matrix, i.e. H0
-1 = aI. The vectors s and y are

given in Eq. 11.
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sj ¼
Dxj

jDxjj
and yj ¼ gðxjþ1Þ � gðxjÞ: ð11Þ

When H–1 is approximated by using only M previous

gradients in Eq. 10, the product of the Hessian and gradient

required in Eq. 9 can be calculated without storing the full

Hessian, and the resulting method is called the limited

memory BFGS method [35]. The step length is determined

by performing a line search in the Dx -direction, such that

the gradient is minimized. We have used the secant method

to perform the line search in Eq. 9.

As an alternative to diagonalization of the full Hessian,

Eq. 9 may be solved in a reduced vector space derived

from the current gradient [36], a method which is closely

related to the generalized minimum of the residual algo-

rithm [38]. The idea is to generate a subspace of the full set

of variables which spans most of the gradient and predicted

step, and solve the NR equations exactly in this subspace.

The efficiency of this approach relies on being able to

generate a reasonable small subspace capable of repre-

senting a good approximation to the full solution, in a

computationally efficient fashion. A residual gradient can

be defined as in Eq. 12 where the geometry step Dx is

initiated as zero. Note that it is not necessary to store the

Hessian explicitly, as only its product with the Dx vector is

required. This product vector may be formed in a direct

fashion during the calculation of the Hessian elements.

Rg ¼ ðH� kIÞDxþ g: ð12Þ

A reduced space bi-vector is calculated from Eq. 13.

bi ¼ ARg: ð13Þ

The bi-vector is orthogonalized to all previous bi-vectors

and normalized. The A matrix can be chosen in different

ways. Equation 14 shows a relationship between the

reduced gradient and the error vector relative to the

Newton step.

Rg ¼ ðH� kIÞ�;
� � Dxþ ðH� kIÞ�1g:

ð14Þ

This suggests that the optimal choice for A is ðH� kIÞ�1

in order to include the direction of the error vector in the

reduced space, but this is computationally inefficient. We

thus seek low-cost approximations to the level shifted

inverse Hessian in order to generate the reduced space

vectors. The simplest form of A is to use the shifted

Hessian diagonal HD given in Eq. 15. Other choices will be

discussed in Sect. 5.

A ¼ ðHD � kIÞ�1: ð15Þ

The components of the reduced gradient, gr
i ; and Hessian,

Hr
ij; in the b-space is calculated from Eq. 16.

gr
i ¼ bt

ig and Hr
ij ¼ bt

iHbj: ð16Þ

The geometry step, Dx; is then calculated from Eq. 9 using

the reduced gradient and Hessian. If the residual gradient,

Eq. 12, is smaller than a suitable threshold, the geometry

step is accepted, otherwise an additional b-vector is gene-

rated from Eq. 13, followed by prediction of a new

geometry step from Eqs. 16 and 9, and a new residual

gradient from Eq. 12. For optimization of the LN function

the b1 vector is defined as (0, 0, 0,…, 1)t to ensure that the

seam constraint is satisfied. The reduction in computational

effort arises from replacing the diagonalization of the full

Hessian with diagonalization of the reduced Hessian and a

few matrix–vector multiplications. The size of the reduced

space is typically between 50 and 200 vectors. We will

denote this method by BNR.

As noted above, 6 of the 3N degrees of freedom corre-

spond to overall translation and rotation of the system and

the energy is independent on these six coordinates. It might

be possible to obtain better convergence if these 6 degrees

of freedom are removed from the system. For the NR

method, Eq. 9, and the BNR method, Eqs. 12–16, the 6

degrees of freedom can be projected out of the Hessian by

the projection operator in Eq. 17 [39].

P ¼ I�vxvt
x � vyvt

y � vyvt
y

�vavt
a � vbvt

b � vcv
t
c:

ð17Þ

In Eq. 17, vx, vy, and vx are vectors corresponding to

translation in the x, y, and z direction respectively and va,

vb, and vc are vectors corresponding to rotation around the

principal axis of rotation.

For the regular NR method, Eq. 9, the 6 redundant

degrees of freedom can be removed from the Hessian by

forming the PHPt matrix product, which ensures that the

corresponding 6 eigenvalues becomes zero to within the

numerical precision of the computer. This, however,

requires two matrix–matrix multiplications that scales as

the cube of the matrix size. If the NR equations are solved

by diagonalization of the Hessian matrix, the additional

effort by projecting out the TR degrees of freedom corre-

sponds to only a few percent of the total computational

time of the step and significantly improves the numerical

stability of the algorithm.

In the BNR method, however, the step is formed in the

space of a number of orthonormal b-vectors generated

from Eqs. 12 and 13. If the projected Hessian is used in

Eq. 12 the 6 redundant variables are kept outside the

b-vector space, but the formation of the projected Hessian

then rapidly becomes the computational bottleneck.

In order to avoid the matrix–matrix multiplications

associated with the projection, the b-vectors generated

from the unprojected Hessian can be orthogonalized
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against the 6 TR vectors. To force this orthogonalization,

we include the 6 TR vectors explicitly in the b-vector space

as the first components, such that all subsequent b vectors

are orthogonal to these degrees of freedom.

We have been unable to find a way to incorporate this

projection of TR modes into the BFGS method, Eq. 10,

since the projected Hessian, PHPt, is singular and the

inverse Hessian calculated in the BFGS method from the

Woodbury matrix identity is only valid for the non-singular

case [40].

4 Results

We have tested the efficiency of the seam optimization by

modeling the symmetric proton transfer between a neutral

(HIE) and protonated (HIP) histidine residue connected by

a poly-alanine chain of varying length.

Hip(Ala)nHie! Hie(Ala)nHip: ð18Þ

By using values of n in the range 5–400 in reaction

(Eq. 18) we have generated systems varying in size

between *100 and *4,000 atoms, corresponding to *300

to *12,000 variables in the target functions.

The starting geometry corresponds to an alpha-helix

conformation, while the seam minimum has the two his-

tidines at the ends of the peptide chain in close contact

corresponding to distance between the two transferring

nitrogen atoms of *2.7 Å. The optimization characteris-

tics shown below thus reflect application purposes where

the initial geometry is far from the seam minimum. Since a

harmonic stretch energy term is used in the force field, the

energy difference between the two initial structures is huge,

typically *1,000 kJ/mol per atom.

For systems of the present size there are a large number

of different seam minima and it is not likely that the dif-

ferent methods, or even the same method with different

parameters, will result in the same optimized conformation.

Since the starting geometry is far from any of the minima,

the total computational cost is approximately independent

on the final conformation and the results presented below

should reflect the true performance of the methods.

The maximum step size in each optimization step for the

NR and BNR methods has been chosen as 1.0 Å. We have

used the Tinker package [41] to calculate the energies,

gradients, and Hessians of the Amber94 force field in

connection with our SEAM program to locate seam minima

between the reactant and product energy surfaces.

All the optimization methods we consider can minimize

a function but only the NR and BNR methods are able to

optimize to a saddle point, as required for the LN function.

We can thus combine the target functions and optimization

algorithms in the following ways:

1. Penalty function with NR, BNR, or BFGS,

2. Lagrange function with NR or BNR;

3. Projection function with BFGS.

In addition, the NR and BNR methods can be used with

and without removal of the TR modes by explicit projec-

tion. The BNR method can be used alternatively with

orthogonalization of the b-vectors against the TR modes.

The BFGS method has the number of previous gradient

vectors stored as a free parameter, and we will consider the

cases of using 5, 7, and 10 gradient vectors to construct the

inverse Hessian. As a validation of the implementation, and

for comparing with unconstrained optimizations, we also

present results with the different methods for minimizing

the energy of a single structure, i.e. the left hand side of the

reaction (Eq. 18). In all the cases, we terminate the opti-

mization when the gradient norm is below a numerical

value of one measured in the units of kilocalories/moles

and Angstrom. For the penalty function approach we start

out with a weight factor w = 1 and then double the value

of w when the gradient norm, |rPen(x)|, is less than 25

until the energy difference, |E1 - E2|, is smaller than 0.01

kcal/mol.

4.1 Energy function

We have checked the implementation of the optimization

algorithms by minimizing the force field energy of a single

molecular structure, and Fig. 1 shows the number of iter-

ations and the running time as a function of the number of

atoms in the system. The number of iterations is almost

independent on the size of the systems for all the optimi-

zation algorithms. This independence on system size is

atypical and is most likely due to the starting geometry

being very close to the minimized geometry. The Newton

methods NR and BNR use a small number of iterations

while the BFGS method typically uses two orders of

magnitude more iterations. The time per iteration, how-

ever, is much lower for the BFGS method than for the

Newton methods and the larger number of iterations does

not necessarily indicate a lower overall efficiency.

The comparison in terms of total running time is shown

in the bottom plot of Fig. 1 (note the logarithmic scale).

For less than 500 atoms the NR method shows the best

performance. In the intermediate range of 500–1,200 atoms

the BFGS method is the most efficient, while the BNR

method becomes preferable for systems with more than

*1,200 atoms. Since the number of iterations is almost

independent on the number of variables, the asymptotic

performance of the NR method is O(N3). For the BFGS

method with five gradient vectors we find the asymptotic

behavior to be O(N2.1). The BNR method determines a

variable sized subspace for each iteration and system, and
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the resulting running time behaves too irregular to deter-

mine an asymptotic behavior.

For minimizing the energy of a single structure there is

little effect of removing the TR degrees of freedom when

using the NR method. This may again be an effect due to

starting from a near-optimum geometry. For the BNR

method we observe a better performance for small systems

when the TR directions are removed by projection of the

Hessian but for large systems the projection degrades the

performance due to the O(N3) nature of the matrix–matrix

multiplications. Orthogonalization of the b vectors against

the 6 TR vectors provide no N3 computational penalty per

iteration and is found to be the best choice.

4.2 Penalty function

Figure 2 shows the number of iterations and the total

running time (note the logarithmic scale) for the seam

optimization with the penalty function. In contrast to the

unconstrained optimization of the energy function, the

number of iterations increases with the system size and the

overall computational cost is thus considerably higher.

The NR method performed poorly with the penalty

function and failed to converge except for the smallest

systems with *200 atoms. The BNR and BFGS methods

in contrast converge in all cases. As with the energy

function, the BFGS method uses two or three orders of

magnitude more iterations than the BNR methods.

The BFGS method displays different behavior when

changing the number of gradient vectors used to generate

the inverse Hessian. The cases with 5 and 7 gradient vec-

tors perform the best both with respect to the number of

iterations and the total computational time.

In contrast to the unconstrained minimization of the

energy of a single structure, location of a seam minimum

proved to be very sensitive to removal of the TR degrees of

freedom. This can be done in the BNR method by pro-

jection of the Hessian matrix, but since this is an N3 pro-

cess, it rapidly becomes the computational bottleneck for

large systems. With the BNR method it is much more

efficient to orthogonalize the b-vectors against the TR
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vectors by including them as the first 6 b-vectors. For the

*2,000 atom case, this reduces the total running time by

about a factor of 10 compared to projecting the Hessian and

by about a factor of 5 compared to not orthogonalizing the

b-vectors against the TR degrees of freedom. The most

efficient optimization algorithm is for all system sizes

found to be the BNR method with removal of the TR

modes by orthogonalization.

4.3 Lagrange function

Figure 3 shows the number of iterations and the running

time for optimizing the LN function with the NR and BNR

methods. The number of iterations used is about the same

for all methods and increases with the number of atoms. It

is also noticeable that the number of iterations for opti-

mizing the LN functions with the BNR method is about the

same as for optimizing the penalty function, despite that

the LN optimization is to a saddle point, while the penalty

optimization is to a minimum.

For small systems the NR method is the most efficient,

but the O(N3) computational cost for diagonalizing the

Hessian means that the total running time increases rapidly

with the number of atoms. For system sizes of about 500

atoms the BNR method become faster and already for

1,000 atoms is the BNR method a factor of 10–50 more

efficient than the NR method.

For small systems both the orthogonalization and pro-

jection methods improve the performance. For all system

sizes orthogonalizing the b-vectors against the TR direc-

tions is computationally more efficient than the projection

method.

As for the penalty function, the BNR method with b-

vector orthogonalization is the overall best method for

optimizing the LN function. When comparing the effi-

ciency of locating seam minima with the penalty function,

the LN function approach is about three times faster for

systems with *2,000 atoms.

4.4 Projection function

The projection function only works with the BFGS meth-

ods since only the gradient of the optimization function is

available. The number of iterations and running time is

shown in Fig. 4 and is in general slightly better with the

projection function than with the penalty function and we

again find that 5 or 7 gradient vectors give the best per-

formance with the BFGS algorithm. The total running time,

however, is approximately a factor of 5–20 longer than

using the LN function with the BNR method. One reason

for this is the use of the less efficient BFGS optimization

compared to BNR, as seen in Fig. 2. Another possible

reason may be related to fact that the projection operator

only incorporates the constraint in a linear approximation.

As shown in Eqs. 4 and 5, the operator for projection onto

the seam subspace is given by the gradient difference

direction, which means that the projection operator changes

with each geometry steps. It is likely that this change in the

minimization subspace contribute to the degraded perfor-

mance relative to the LN approach, where the coupling

between the minimization and maximization subspaces is

included by the lagrange multiplier.

A second-order optimization scheme for the projection

function is hampered by the non-symmetric nature of the

Jacobian of the gradient associated with the projection

function, Eq. 6. Silicia et al. [24] have recently proposed a

second-order optimization scheme where a symmetric

Hessian within the seam subspace is defined as the pro-

jected derivative of the seam energy gradient. The resulting

algorithm employs a threshold parameter below which the

direction perpendicular to the seam is handled separately,

and this algorithm appears to display a better convergence

near the seam minimum.
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5 Improving the BNR method

In the previous section it was found that the LN function

combined with the BNR method with orthogonalization of

the b-vectors against the TR directions provides the best

overall performance for locating minima on seams for

systems with many variables. A variable factor in the BNR

method is how the b-vectors are generated. A rapid gene-

ration of a small set of b-vectors covering a large fraction

of the full Newton step is the key to a good performance.

While Eq. 15 is a very simple approach, a better approxi-

mation to the inverse Hessian may be obtained by the

BFGS method in Eq. 10, but the level shifting parameter

prevents the use of this directly. If, however, k is small

compared to the Hessian diagonal elements, the level

shifting is not important and can be neglected. When

shifting of the diagonal elements is important an

improvement over the diagonal Hessian can be obtained by

using 3 9 3 blocks along the diagonal, corresponding to

coupling between the x, y, and z coordinates of atom i. This

scheme is shown in Eq. 19, where H3 is the Hessian con-

sisting of the 3 9 3 atomic coordinate blocks, and the

inversion of these block matrices can be performed

analytically.

A ¼ Eq: 10 if k� maxHD

ðH3 � kIÞ�1
otherwise

�
ð19Þ

We use Eq. 10 if maxHD/k[ 500 and find that the method

works best using 2 gradient vectors in the limited memory

BFGS method.

Figure 5 shows the results of the LN function and the

BNR method with orthogonalization of the b-vectors

against the TR modes using either Eq. 15 or Eq. 19 to

generate the b-vectors for systems with up to 4,000 atoms.

The performance is slightly improved using Eq. 19 com-

pared to Eq. 15 but the difference seems to diminish as the

number of atoms increases.

6 Conclusion

We have investigated the computationally most efficient

strategy for solving large-scale constrained optimizations,

exemplified by locating minima on seams corresponding to

two different force field energy functions depending on the

same set of atomic coordinates. In agreement with other

work [30], we find that the Lagrange–Newton approach

performs better than using either a penalty or projection

function. For locating minima on seams, it is important that

redundant degrees of freedom, corresponding for example

to overall translation and rotation of the system, are

explicitly removed when generating the geometry step. For

systems with less than about 500 atoms, the most efficient

approach is to use a straight forward Newton–Raphson

optimization scheme with explicit diagonalization of the

Hessian. For larger systems it is preferably to solve the

problem in a reduced vector space which can be generated

in an iterative fashion.

 10000

 100000

 1e+06

0  500  1000  1500  2000

Ite
ra

tio
ns

Atoms

0  500  1000  1500  2000

Atoms

BFGS(5)
BFGS(7)

BFGS(10)

 1000

 10000

 100000

 1e+06

T
im

e/
s

BFGS(5)
BFGS(7)

BFGS(10)

Fig. 4 Number of iterations (top) and running time (bottom) for

minimization of the projection function

 10

 100

 1000

 10000

 100000

 1e+06

0  500  1000  1500  2000  2500  3000  3500  4000

T
im

e/
s

Atoms

BNR with TR Orthogonalization and Eq. (15)
BNR with TR Orthogonalization and Eq. (19)

Fig. 5 Running time for optimization of the Lagrange function with

the BNR method with orthogonalization of the b-vectors against the

TR modes and using either Eq. 15 or Eq. 19

484 Theor Chem Acc (2009) 123:477–485

123



We have in the present work used exact Hessians for the

regular Newton–Raphson optimization and for calculating

the residual gradient in the iterative Newton–Raphson

method. This is motivated by the fact that Hessians are

computational inexpensive to calculate when using force

field energy functions. The use of an updating procedure for

estimating the Hessian possesses no formal changes in the

algorithms, but will affect the convergence rate and possi-

bly change the conclusions regarding the most efficient

combination of target function and optimization algorithm.

We note, however, that Keal et al. [30] also found the

Lagrange–Newton approach to be most efficient when used

in connection with an updated Hessian. Our choice of

starting geometries far from the seam minimum reflects a

typical use for modeling chemical reactions within a force

field environment [25, 26], and testifies that all of the

present methods display a stable global convergence.

For illustrating the convergence properties of the dif-

ferent algorithms, we have employed the Amber94 force

field, but a modeling of chemical reactions will require a

more realistic function for the stretch energy, as for

example a Morse potential, and the use of either implicit or

explicit solvent. Neither of these improvements is expected

to change the conclusions regarding the most efficient

algorithm. The use of a Morse potential for the stretch

energy has been implemented by switching from the native

harmonic potential in Amber94 to a Morse potential once

the seam minimization is close to converged. This strategy

only adds a few extra iterations in the final refinement of

the seam minimum. The use of an explicit solvent will

increase the number of degrees of freedom, but as these

will be almost exclusively in the minimization subspace, it

should not change the convergence characteristics.
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